Enzymes Problem Set 1

- A) What concentration of the substrate would be required to obtain an initial rate of $0.5V_{max}$, $0.9\ V_{max}$, $0.95\ V_{max}$?
- B) The following initial rate data were obtained for an enzyme catalyzed reaction:

Substrate	Measured
Concentration	Initial Rate
(µmol/L)	(µmol/Lmin)
1	0.08
5	0.25
10	0.33
100	0.48
1000	0.50

- i) What is the value of K_M and V_{max} ?
- ii) Calculate the concentration of substrate remaining after 60 minutes if the initial substrate concentration is 20 μmol/L.
- C) The following initial rate data were obtained by adding 2.5 µg of a purified enzyme having molecular weight of 42,300 Daltons into 100 mL of water with the indicated concentrations of substrate.

S_0	V
(mmol/L)	(μmol/Ls)
1.00	4.50
2.00	7.90
4.00	11.10
8.00	15.20

Calculate the value of k_{CAT} , K_{M} and the pseudo first order rate constant.

D) The following initial rate data were obtained by adding 0.35 mg of a purified dimeric enzyme having (total) molecular weight of 82,800 Daltons into 100 mL of water with the indicated concentrations of substrate.

Substrate Conc	V
(mM)	(mM/min)
1.0	0.55
2.0	0.94
3.0	1.32
5.0	1.87
10.0	2.59

- i. Calculate the value of k_{CAT} , K_{M} and the pseudo first order rate constant.
- ii. For a solution having an enzyme concentration of 3.5 mg/L, calculate the final substrate concentration after 5 minutes of reaction when the initial substrate concentration is 15 mM.
- iii. For a solution having an enzyme concentration of 1.0 mg/L, calculate the final substrate concentration after 5 minutes of reaction when the initial substrate concentration is 15 mM.
- E) Tyrosine phenol lyase catalyzes the reversible conversion of tyrosine to phenol, pyruvate and ammonium. The enzyme uses pyridoxal 5-phosphate (PLP) as a cofactor. The enzyme catalyzes similar reactions as well, for example the reversible conversion of L-dopa (3,4-dihydroxy L-phenylalanine) to catechol, pyruvate and ammonium. An assay for the activity of this enzyme involves incubating excess phenol, pyruvate and ammonium with the enzyme sample for a measured length of time. After the termination of the reaction, the L-tyrosine present in the sample is quantified by liquid chromatography.

The following solutions are mixed:

500 μL	1.3 M NH ₄ Cl/0.05M Na ₄ EDTA pH adjusted to 8.5
100 μL	80 mM Na ₂ SO ₃ (a reducing agent to stabilize the reaction)
100 μL	800 mM Pyruvate
100 μL	1.0 mM PLP
100 μL	500 mM Phenol

At t=0, you add $100 \,\mu\text{L}$ of an enzyme solution known to have a protein concentration of 8.5 $\,\mu\text{g/mL}$. After 7.0 minutes, you add $100 \,\mu\text{L}$ trichloroacetic acid which terminates the reaction. Using the HPLC, you find that the concentration of L-tyrosine in this final solution is 2.3 mM.

- i) What is the activity of the original enzyme solution (in IU/mL)?
- ii) What is the specific activity of the original enzyme solution (in IU/mg protein)?

F) DHA kinase catalyzes the conversion of dihydroxyacetone (DHA) to dihydroxyacetone phosphate (DHAP) using ATP as a co-substrate. The enzyme assay relies on a coupled reaction in which the reaction product, DHAP, is subsequently converted into glycerol 3-phosphate by the presence of the enzyme glycerol 3-phosphate dehydrogenase, which uses NADH as a co-substrate. Glycerol is added to the assay to prevent glycerol kinase interference. α,α-dipyridyl is added to the assay to prevent glycerol dehydrogenase interference. NADH absorbs light at a wavelength of 340 nm. Thus, the rate of DHA kinase activity is directly related to the rate at which NADH disappears from the solution.

The following solutions are mixed:

```
200 μL
              200 mM triethanolamine-HCl buffer
400 \mu L
              25 mM \alpha,\alpha-dipyridyl
50 μL
              5 U glycerol 3-phosphate dehydrogenase from rabbit muscle
50 μL
              2.0 M glycerol
50 μL
              2.0 mM NADH
50 μL
              20 mM MgCl<sub>2</sub>
50 μL
              20 mM dihydroxyacetone, DHA
50 μL
              20 mM ATP
```

At t=0, you add $100~\mu L$ of an enzyme solution known to have a protein concentration of 4.3 $\mu g/m L$, and measure the rate of decrease in absorbance of the solution to be 0.52 AU/min. The molar extinction coefficient of NADH is 6.22 AU·L/mmol for the light path length used. "AU" means absorbance unit.

- i) Write the reaction of the enzyme and the couple reaction, including the cofactors. Highlight the actual species measured. Why is excess glycerol 3-phosphate dehydrogenase needed?
- ii) What is the activity of the original enzyme solution (in IU/mL)?
- iii) What is the specific activity of the original enzyme solution (in IU/mg protein)?
- G) Iodoacetamide (MW = 185) is a common irreversible inhibitor of enzymes because it binds to reactive cysteine residues in a 1:1 molar ratio.

The enzyme glyceraldehyde 3-phosphate dehydrogenase has a MW of 150,000, and is known to have one reactive cysteine residue at the active site. A 5 mL solution of this enzyme at a concentration of 1.2 mg/mL is completely inactivated by 0.03 mg iodoacetamide. How many subunits does this enzyme contain?

- H) Invertase mediates the conversion of sucrose into glucose and fructose. You place 0.66 mg of invertase in a beaker of 500 mL buffer initially containing 20 mM sucrose and no glucose and fructose. The value of K_M is 2.5 mM and the value of k_{cat} is 1550 s⁻¹. The invertase you are using has a molecular weight of 65000.
 - i) What is the initial reaction rate (mmol sucrose/Lmin)?
 - ii) What will be the concentration of sucrose (mM) after 5 min?
 - iii) What will be the reaction rate (mmol sucrose/Lmin) after 5 min? By what percentage has the reaction rate decreased after 5 min?
 - iv) What will be the concentration of sucrose (mM) after 10 min? What will be the concentration of glucose after 10 min?
 - v) What will be the reaction rate (mmol sucrose/Lmin) after 10 min? By what percentage has the reaction rate decreased after 10 min?
 - vi) If in the 500 mL solution you used 1.32 mg of the enzyme (instead of 0.66 mg) what will be the concentration of sucrose after 10 min?